Novel Terpenoids from the Formosan Soft Coral Cespitularia hypotentaculata

Chang-Yih Duh,*,[†] Ali Ali H. El-Gamal,[†] Shang-Kwei Wang,[‡] and Chang-Feng Dai[§]

Department of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan, and Institute of Oceanography, National Taiwan University, Taipei, Taiwan, Republic of China

Received February 28, 2002

Four new cytotoxic diterpenes, cespitularins A-D (1-4), having the verticillane skeleton, a new cytotoxic norditerpene, cesputularin E (5), that possesses a novel norverticillane skeleton, and three new diterpenes, cespitularins F-H (6-8), possessing a novel carbon skeleton named cespitularane, were isolated from the methylene chloride solubles of the Formosan soft coral *Cespitularia hypotentaculata*. The structures of cespitularins A-H (1-8) were elucidated by 1D and 2D NMR spectral analysis, and their cytotoxicity against selected cancer cells was measured in vitro.

The genus *Cespitularia* has afforded diterpenes of cembrane and neodolabellane skeletons.^{1,2} As part of our search for bioactive substances from marine organisms, the Formosan soft coral *Cespitularia hypotentaculata* Roxas (Xeniidae) was studied because CH_2Cl_2 extracts showed significant cytotoxicity to A549 (human lung adenocarcinoma), HT-29 (human colon adenocarcinoma), and P-388 (mouse lymphocytic leukemia) cell cultures as determined by standard procedures.^{3,4} Bioassay-guided fractionation resulted in the isolation of four new cytotoxic diterpenes, cespitularins A–D (**1–4**), that possess the verticillane skeleton, a new cytotoxic norditerpene, cesputularin E (**5**), having a novel norverticillane skeleton, and three new diterpenes, cespitularins F–H (**6–8**), possessing a novel carbon skeleton named cespitularane.

Results and Discussion

Cespitularin A (1) was isolated as a colorless amorphous solid. HREIMS, ¹³C NMR, and DEPT spectra established the molecular formula of 1 as $C_{20}H_{28}O_2$. Thus, seven degrees of unsaturation were determined for 1. The IR spectrum of 1 indicated the presence of hydroxyl group(s) $(v_{\rm max}$ 3650 cm⁻¹). The presence of eight sp² hybridized carbon atoms in the molecule, as deduced from the ¹³C and DEPT NMR spectra (Table 2), corresponding to four carbon-carbon double bonds as the only multiple bonds, indicated compound 1 to be tricyclic. The ¹³C NMR singlet at δ 134.3 and a doublet at δ 129.9 that was correlated in the HMBC experiment (Table 3) with the ¹H NMR signal at δ 5.13 (br d, J = 7.5 Hz, 1H) together with the vinylic methyl signals at δ 1.67 (s, 3H) in the $^1\!\mathrm{H}$ NMR spectrum and at δ 17.7 (q) in the ¹³C NMR spectrum were assigned to an *E*-trisubstituted double bond bearing a methyl group.⁵ HMQC correlation of $\delta_{\rm H}$ 4.79 (s, 1H) and 4.80 (s, 1H) with $\delta_{\rm C}$ 112.4 (t) as well as HMBC correlation of $\delta_{\rm H}$ 4.79 (s, 1H) and 4.80 (s, 1H) with $\delta_{\rm C}$ 147.1 (s), 29.8 (t), and 44.6 (t) indicated that 1 contained an exocyclic methylene. HMQC correlation of $\delta_{\rm H}$ 7.05 (s, 1H) with $\delta_{\rm C}$ 134.6 (d) and HMBC correlation of $\delta_{\rm H}$ 7.05 (s, 1H) with $\delta_{\rm C}$ 124.1 (s), 126.2 (s), and 144.5 (s) indicated the presence of an α,β,β' -trisubstituted furan. The geminal methyls at $\delta_{\rm H}$ 1.45 (s, 3H) and 1.21 (s, 3H) showed HMBC correlations with $\delta_{\rm C}$ 34.2 (s),

43.1 (d), and 126.2 (s), indicating **1** contained a gemdimethyl-bearing quaternary carbon which was adjacent to a methine carbon and a quaternary olefinic carbon. Measurement of the $^{13}C^{-13}C$ homonuclear shift correlation 2D spectrum (INADEQUATE) (Figure 1) of **1** together with COSY, HMQC, and HMBC experiments established its chemical structure and enabled also the assignment of all resonances in the NMR spectra. The relative stereochemistry of **1** was deduced from 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 were on one side of the molecule, while Me-19 was on the

10.1021/np020077w CCC: \$22.00 © 2002 American Chemical Society and American Society of Pharmacognosy Published on Web 08/28/2002

^{*} To whom correspondence should be addressed. Tel: 886-7-525-2000, ext. 5036. Fax: 886-7-525-5020. E-mail: yihduh@mail.nsysu.edu.tw.

[†] National Sun Yat-sen University.

[‡] Kaohsiung Medical University.

[§] National Taiwan University

Table 1.	¹ H NMR	Spectral	Data ^a of	1-8	in	CDCl ₃
----------	--------------------	----------	----------------------	-----	----	-------------------

	1	2	3	4	5	6	7 ^b	8
1	1.87 m	1.79 m	1.53 m	1.68 m	1.72 m	1.67 m	1.69 m	1.73 m
2	1.39 m	1.46 m	1.50 m	2.30 m	1.50m	1.89 m	1.60 m	1.97 m
	1.69 m	2.11 m	2.16 m		1.98 m	2.28 m	1.94 m	2.03 m
3	1.65 m	2.17 m	2.00 m	1.54 m	2.69 dd (11.0, 10.2)	2.01 m	1.96 m	5.52 t (6.0)
	1.79 m		2.30 m		1.91 m	2.43 m	2.22 m	
5	2.16 dd (13.0, 3.0)	2.13 m	1.94 m	2.36 m	2.27 m	1.96 dd (13.2, 3.0)	1.75 m	2.92 d (13.5)
	2.35 dd (13.0, 6.5)		2.15 m		2.47 dd (11.0, 9.8)	2.49 dd (1.2, 4.5)	2.29 m	2.99 d (13.5)
6	4.44 m	1.93 m	2.14 m	4.38 dt (7.5, 11.8)	4.44 dt (7.5, 2.1)	4.52 m	2.10 m	
		2.14 m		,	,		2.31 m	
7	5.13 d (7.5)	4.47 br d (12.0)	5.19 dd (10.5, 3.9)	5.50 d (8.1)	5.14 d (6.0)	4.94 m	5.16 t (4.2)	2.28 m
8		(1210)	0.0)					2.82 m 2.65 m
9α 9β 10	3.21 d (14.7) 3.49 d (14.7)	3.21 d (18.6) 3.35 d (18.6)	2.95 t (12.0) 2.30 m 4.59 dd (12.3, 4.2)	2.97 s	3.44 d (15.6) 3.05 d (15.6)	3.27 d (6.0)	3.29 d (3.3)	2.54 d (6.3)
12			1)		6.21 dd (3.6, 3.3)			
13	2.57 m	2.60 dt (7.2, 0.9)	1.97 m	2.22 m	2.32 m	2.37 m	2.68 dt (12.6, 5.7)	2.35 m
		,	2.72 dd (14.7, 9.3)			2.65 m	2.37 m	2.45 m
14α	1.12 m	1.30 m	1.58 m	1.73 m	2.26 m	1.71 m	1.84 m	2.07 m
14β	2.23 m	2.25 m		2.24 m	1.75 m	2.09 m	2.36 m	1.61 m
16	1.21 s	1.17 s	0.91 s	1.31 s	1.28 s	1.14 s	1.14 s	1.09 s
17	1.45 s	1.33 s	1.12 s	1.47 s	1.16 s	1.37 s	1.35 s	1.43 s
18	4.78 s	4.60 s	4.60 s	4.83 s	4.82 s	4.93 s	4.74 s	1.86 s
	4.79 s	4.65 s	4.68 s	4.85 s	4.84 s		4.81 s	
19	1.67 s	1.65 s	1.64 s	1.60 s	1.75 s	1.84 s	1.78 s	1.25 d (7.2)
20	7.05 s	7.09 s	1.95 s			4.89 m	4.84 dd (5.1, 3.9)	4.60 dd (12.0, 6.4)
OH-20							2.26 d (3.9)	5.64 d (12.0)

^a Recorded in CDCl₃ at 300 MHz, unless stated otherwise. ^b Measured in CDCl₃ at 500 MHz.

Table 2. ¹³C NMR Spectral Data^{*a*} (δ) of **1**–**8** in CDCl₃

	1	2	3	4	5	6	7^{b}	8
1	43.1 d	44.8 d	44.9 d	43.7 d	43.1 d	41.8 d	42.0 d	42.1 d
2	31.4 t	32.5 t	27.7 t	18.1 t	30.7 t	31.0 t	22.3 t	31.2 t
3	29.8 t	29.2 t	38.4 t	31.7 t	30.7 t	22.6 t	32.2 t	129.0 d
4	147.1 s	152.7 s	149.8 s	146.1 s	147.0 s	145.8 s	150.6 s	127.0 s
5	44.6 t	32.9 t	33.6 t	43.6 t	44.7 t	45.7 t	37.4 t	46.9 t
6	68.7 d	36.5 t	31.9 t	68.3 d	69.3 d	66.8 d	29.6 t	213.3 s
7	129.9 d	127.4 d	128.8 d	136.0 d	133.2 d	132.4 d	130.7 d	47.2 t
8	134.3 s	134.3 s	127.5 s	131.0 s	130.8 s	133.7 s	130.2 s	25.3 d
9	37.8 t	36.4 t	48.3 t	48.7 t	51.1 t	62.6 d	62.5 d	57.5 d
10	144.5 s	147.0 s	69.0 d	108.8 s	202.2 s	204.1 s	202.9 s	205.2 s
11	126.2 s	125.3 s	137.4 s	167.8 s	148.0 s	146.6 s	145.8 s	143.2 s
12	124.1 s	123.1 s	129.9 s	129.1 s	135.5 d	169.2 s	169.2 s	168.0 s
13	17.7 t	16.1 t	33.9 t	32.6 t	24.0 t	22.1 t	21.5 t	20.8 t
14	25.9 t	26.0 t	33.0 t	23.9 t	23.0 t	28.5 t	28.7 t	22.3 t
15	34.2 s	34.5 s	38.9 s	37.2 s	35.4 s	33.7 s	33.8 s	35.4 s
16	33.7 q	33.6 q	28.5 q	34.0 q	32.9 q	30.6 q	30.4 q	31.5 q
17	26.3 q	25.8 q	33.9 q	24.2 q	24.6 q	23.9 q	23.6 q	25.3 q
18	112.4 t	109.2 t	106.6 t	114.0 t	112.6 t	112.4 t	109.5 t	27.1 q
19	17.7 q	17.6 q	20.0 q	17.2 q	19.0 q	19.5 q	18.3 q	23.0 q
20	134.6 đ	134.8 đ	24.1 q	171.5 s	-	73.8 đ	73.2 đ	72.4 đ

^a Recorded in CDCl₃ at 75 MHz, unless stated otherwise. ^b Measured in CDCl₃ at 125 MHz.

opposite side of the molecule. The relative stereochemistry of the secondary hydroxyl at C-6 was not determined due to the flexibility of the 13-membered ring. From the aforementioned data, cespitularin A can be formulated as 1.

Cespitularin B (2) was isolated as a colorless amorphous solid, whose molecular formula, $C_{20}H_{28}O$, was revealed by HREIMS and NMR spectra. The NMR features (Tables 1 and 2) of 2 were quite similar to those of 1. The only difference was the absence of the secondary hydroxyl at

C-6 in **2**. The relative stereochemistry of **2** was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 were on one side of the molecule, while Me-19 was on the opposite side of the molecule. The structure of cespitularin B is thus assigned as **2**.

Cespitularin C (3) was isolated as a colorless amorphous solid and analyzed for $C_{20}H_{32}O$ by HREIMS and NMR spectral data (Tables 1 and 2). Spectroscopic data of 3 were analogous to those of 2 with the exception that the

Table 3. Selected HMBC Correlations of 1-8

Н	1	2	3	4	5	6	7	8
1	C-2, 11, 13, 16, 17	C-2, 14	C-14	C-14	C-14	C-2, 14	C-15	C-2, 14
2	C-3, 4	C-14	C-14	C-14	C-1, 13, 15	C-1, 14	C-4	C-1
3	C-5	C-2	C-5, 18	C-5		C-2	C-2, 4, 18	
5 6	C-3, 4, 6, 7, 18	C-4, 6	C-3	C-3, 4, 6, 7, 18	C-3, 4, 6, 7, 18	C-3, 4, 6, 7, 18 C-4, 8	C-3, 4, 7, 18	C-6
7					C-8, 9	C-6	C-9, 19	C-6, 8, 9
9	C-7, 8, 10, 19	C-7, 10	C-8, 10, 11, 19	C-7, 8, 10, 11,	C-7, 8, 10, 11,	C-7, 8, 10, 11,	C-7, 8, 10, 11,	C-7, 8, 10, 11,
				19	12, 19	12, 19, 20	19	12, 20
10			C-8, 9, 11, 12, 15					
12					C-10, 11, 13,			
					14, 15			
13	C-1, 11, 12, 14, 20	C-1, 11, 14, 20	C-12	C-1, 14, 20	C-12, 14	C-11, 12	C-1, 11, 12, 14	C-11
14	C-1, 12, 13, 15	C-12, 13	C-1	C-12		C-1	C-1, 12, 13, 15	C-12
16	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17	C-1, 11, 15, 17
17	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16	C-1, 11, 15, 16
18	C-3, 4, 5		C-4, 5	C-3, 4	C-3, 4, 5	C-3, 4, 5	C-3, 5	C-3, 4, 5
19	C-7, 8, 9	C-7, 9	C-8, 9	C-7, 8, 9	C-7, 8, 9	C-7, 8, 9	C-7, 8, 19	C-7, 8, 9
20	C-10, 11, 12		C-11, 12, 13			C-9, 11	C-12	

Table 4. Selected NOE Correlations of 1-8

Н	1	2	3	4	5	6	7	8
1	H-16, 17	H-16, 17	H-16, 17	H-16, 17	H-16, 17	H-16	H-16, 17	H-16, 17
2	H-3	H-3	H-3	H-3	H-3	H-3	H-2, 3	H-3
3	H-2, 18	H-2, 18	H-2, 18	H-5, 18	H-18	H-2	H-2, 18	H-17, 18
5	H-18	H-18	H-7	H-3, 18	H-18	H-3, 18	H-6, 18	H-17, 18
6	H-5, 19		H-17	H-5, 19	H-5, 19	H-5, 19	H-5, 6	
7	H-9 β , 17	H-9 β , 17	H-5	H-9, 17	H-17	H-17	H-17	H-19
8								H-7, 19
9α	H-19		H-20	H-17, 19	H-19	H-20	H-20	H-19, 20
9β	H-7		H-19					
10			H-17, 19					
12					Η-9α			
13	H-20	H-20	H-14	H-14	H-14	H-14	H-14	H-14
14α	H-16	H-16	H-13	H-13	H-13	H-13	H-13	H-13
14β			H-13, 16	H-13, 16	H-13, 16	H-13, 16	H-13, 16	H-13
16	H-1, 14 β	H-1, 14 β	H-1, 14 β	H-1, 14 β	H-1, 14 β	H-1, 14 β	H-1, 14 β	H-1, 14 β
17	H-1, 7	H-1, 7	H-1, 10	H-1, 7, 9	H-1, 7	H-1, 7	H-1, 7	H-1, 3, 7β
18	H-3, 5	H-3, 5	H-3	H-3, 5	H-3, 5	H-3, 5	H-3, 5	H-3
19	Η-6, 9α	H-6	H-9 β , 10	Η-6, 9α	Η-6, 9α	H-6		H-7, 9
20	H-13	H-13	Η-9α			H-9	H-9	H-9

Figure 1. 2D INADEQUATE correlations of 1.

resonances for the trisubstituted furan were replaced by a tetrasubstituted olefin bearing a methyl group and a secondary hydroxyl at C-10. HMBC correlations (Table 3) between H-20 and C-12, C-11, and C-13; H-10 and C-8, C-9, C-11, C-12, and C-15; and H-16, 17 and C-11 clearly positioned the tetrasubstituted olefin and the secondary hydroxyl. The relative stereochemistry of **3** was deduced from a 2D NOESY experiment (Table 4), which indicated that H-10, Me-19, Me-16, Me-17, and H-1 were on one side of the molecule, while Me-20, H-7, and H-9 α were on the opposite side of the molecule. The structure of cespitularin C is thus formulated as **3**.

Cespitularin D (4) was isolated as an colorless amorphous solid of molecular formula $C_{20}H_{28}O_4$, as indicated by HREIMS and ¹³C NMR (Table 2) spectral methods. The NMR features of **4** were also analogous to those of **1**.

Analyses of 2D NMR data revealed that 4 possessed the same carbocyclic skeleton as 1. However, there was a significant difference that indicated the presence of a γ -hydroxy- α , β -unsaturated- γ -lactone [$\delta_{\rm C}$ 171.5 (s), 129.1 (s), 167.8 (s), 108.8 (s)] in **4** instead of a α,β,β' -trisubstituted furan. HMBC correlations (Table 3) between H-16, H-17 and C-11; H-13 and C-14, C-1, C-20; H-9 and C-10, C-11, C-8, C-7, C-19; and H-19 and C-7, C-8, C-9 clearly positioned the γ -hydroxy- α , β -unsaturated- γ -lactone. The relative stereochemistry of 4 was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 are on one side of the molecule, while Me-19 is on the opposite side of the molecule. The relative stereochemistry of the secondary hydroxyl at C-6 was not determined due to the flexibility of the 13-membered ring. The structure of cespitularin D is thus formulated as 4.

Cespitularin E (5) was analyzed for $C_{19}H_{28}O_2$ by HRE-IMS and NMR spectral data. The IR and UV spectra showed the presence of an α,β -unsaturated ketone (1690 cm⁻¹; 232 nm) and hydroxyl (3660 cm⁻¹) moieties. Spectroscopic data of 5 were analogous to those of 1 with the exception that the resonances for the trisubstituted furan were replaced by the α,β -unsaturated ketone at C-11(α), C-12(β), and C-10(carbonyl), which was proved by HMBC correlations (Table 3) between H-12 and C-10, C-11, C-13, C-14; H-16, 17 and C-11; H-9 and C-10, C-19, C-8, C-7 as well as COSY correlation between H-12 and H-13. The relative stereochemistry of 5 was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 are on one side of the molecule, while Me-19 is on the opposite side of the molecule. The relative stereochemistry of the secondary hydroxyl at C-6 was not determined due to the flexibility of the 13membered ring. The structure of cespitularin E is thus formulated as **5**.

Cespitularin F (6) has the molecular formula $C_{20}H_{28}O_3$ as determined by HREIMS and NMR spectral data (Tables 1 and 2). The IR spectrum showed the presence of hydroxyl (3610 cm⁻¹) and α , β -unsaturated ketone (1730 cm⁻¹) moieties. The UV absorption at λ_{max} 236 nm suggested the presence of an α , β -unsaturated ketone. The NMR spectra of 6 were analogous to those of 5 except that the resonances for the α,β -unsaturated ketone moiety and the methylene α (C-9) to the ketone in **5** were replaced by an α,β unsaturated- γ -hydroxycyclopentanone ($\delta_{\rm H}$ 4.89 m, 3.27 d, $\delta_{\rm C}$ 204.1 s, 146.6 s, 169.2 s, 73.8 d, 62.6 d) in **6**. COSY crosspeaks between H-9 (δ 3.27, d) and H-20 (δ 4.89, m), as well as HMBC correlations (Table 3) between H-9 and C-7, C-8, C-19, C-11, C-12, C-20; H-20 and C-9, C-11; H-16, 17, and C-11; and H-13 and C-11, C-12 clearly positioned the α,β unsaturated- γ -hydroxycyclopentanone at C-11 (α), C-12 (β), C-20 (γ), C-9 (δ), and C-10 (carbonyl). The relative stereochemistry of 6 was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 are on one side of the molecule, while Me-19 is on the opposite side of the molecule. According to an analysis of NOE correlation from H-7 to H₃-17 and consideration of a Dreiding model of compound 6, H-9 and H-20 should be located on the β -face of tetrahydroindenone ring. The relative stereochemistry of the secondary hydroxyl at C-6 was not determined due to the flexibility of the 13membered ring. The structure of cespitularin F is thus formulated as 6.

Cespitularin G (7) was isolated as a colorless amorphous solid, whose molecular formula, C₂₀H₂₈O₂, was revealed by HREIMS and NMR spectra (Tables 1 and 2). The IR spectrum of 7 indicated the presence of an α , β -unsaturated ketone (1735 cm⁻¹) and a hydroxyl group (3640 cm⁻¹). The UV absorption at λ_{max} 234 nm suggested the presence of an α,β -unsaturated ketone. The NMR features of compound 7 were quite similar to those of compound 6. The only difference was the absence of the secondary hydroxy at C-6 in 7. The relative stereochemistry of 7 was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7, and H-1 are on one side of the molecule, while Me-19 is on the opposite side of the molecule. According to an analysis of NOE correlation from H-7 to H₃-17 and consideration of a Dreiding model of compound 7, H-9 and H-20 should be located on the β -face of the tetrahydroindenone ring. The structure of cespitularin G is thus formulated as 7.

Cespitularin H (8) was isolated as a colorless amorphous solid, whose molecular formula, $C_{20}H_{28}O_3$, was revealed by HREIMS and NMR spectra (Tables 1 and 2). The IR spectrum of **8** indicated the presence of a hydroxyl at 3650 cm⁻¹ and ketones at 1730 and 1715 cm⁻¹. The UV absorption at λ_{max} 235 nm suggested the presence of an α,β -unsaturated ketone. The NMR features of compound **8** were analogous to those of compound **6** except that the exomethylene at C-4 and the olefinic methyl at C-8 in **6** were replaced by a cis olefinic methyl ($\delta_{\rm H}$ 1.86 s; $\delta_{\rm C}$ 27.1 q) and a secondary methyl ($\delta_{\rm H}$ 1.25 d; $\delta_{\rm C}$ 23.0 q), respectively. The relative stereochemistry of **8** was deduced from a 2D NOESY experiment (Table 4), which indicated that Me-16, Me-17, H-7 β , and H-1 are on one side of the molecule.

Table 5. Cytotoxicity^a of 1-8

	cell lines ED ₅₀ (µg/mL)					
compound	A549	HT-29	P-388			
1	8.42	9.76	3.66			
2	7.96	9.25	3.23			
3	0.12	8.86	0.01			
4	>50	>50	3.86			
5	0.034	17.10	4.66			
6	16.11	>50	>50			
7	>50	>50	>50			
8	9.32	23.69	>50			

 a For significant activity of pure compounds, an ED_{50} of ${\leq}4.0$ $\mu g/mL$ is required.

According to an analysis of a NOE correlation from H-7 to H₃-17 and consideration of a Dreiding model of compound **8**, H-9 and H-20 should be located on the β -face of the tetrahydroindenone ring. The NOE between Me-19 and H-9 allowed us to locate Me-19 at the β -equatorial position. The NOE between Me-18 and H-3 confirmed the *Z*-configuration at $\Delta^{3,4}$. The structure of cespitularin H is thus formulated as **8**.

The cytotoxicity of cespitularins A–H (**1–8**) is shown in Table 5. Cespitularin C exhibited potent cytotoxicity against P-388 and A549 cells. Cespitularins A, B, and D showed moderate cytotoxicity against P-388 cells. Cespitularin E exhibited potent cytotoxicity against A549 cells.

Experimental Section

General Experimental Procedures. Melting points were determined using a Yanagimoto micromelting point apparatus and are reported uncorrected. Optical rotations were determined on a JASCO DIP-181 polarimeter. UV spectra were obtained on a Shimadzu UV-160A spectrophotometer, and IR spectra were recorded on a Hitachi 26-30 spectrophotometer. The NMR spectra were recorded on a Bruker Avance 300 NMR spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C or on a Varian Unity INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, respectively, in CDCl₃ using TMS as internal standard. EIMS spectra were obtained with a JEOL JMS-SX/SX 102A mass spectrometer at 70 eV. Si gel 60 (Merck, 230–400 mesh) was used for column chromatography; precoated Si gel plates (Merck, Kieselgel 60 F_{254} , 0.25 mm) were used for TLC analysis.

Animal Material. The soft coral *C. hypotentaculata* was collected at Orchid Island, off Taiwan, in February 2001, at a depth of 10 m and was stored for 1 month in a freezer until extraction. A voucher specimen, NSUGN-046, was deposited in the Department of Marine Resources, National Sun Yatsen University, Taiwan.

Extraction and Isolation. The bodies of the soft coral C. hypotentaculata were freeze-dried to give 0.62 kg of a solid, which was extracted with CH_2Cl_2 (2.0 L \times 3). After removal of solvent in vacuo, the residue (8.82 g) was chromatographed over Si gel 60 using *n*-hexane and *n*-hexane–EtOAc mixtures of increasing polarity. Elution by n-hexane-EtOAc (9:1) afforded fractions containing 2. Elution by *n*-hexane-EtOAc (6: 1) afforded fractions containing **7** and **8**. Elution by *n*-hexane-EtOAc (4:1) afforded fractions containing 3. Elution by n-hexane-EtOAc (2:1) afforded fractions containing 1. Elution by *n*-hexane-EtOAc (1:2) afforded fractions containing 5. Elution by n-hexane-EtOAc (1:9) afforded fractions containing 4. Elution by EtOAc afforded fractions containing 6. Compound 2 was further purified by Si gel column chromatography, by eluting with *n*-hexane-EtOAc (49:1). Compounds 7 and 8 were obtained by C18 HPLC column chromatography, by using MeOH-H₂O (1:1) as solvent system. Compound 3 was obtained by Si gel column chromatography, by eluting with *n*-hexane $-CH_2Cl_2$ (4:1). Compound **1** was obtained by Si gel column chromatography, by eluting with *n*-hexane-CH₂Cl₂ (2:1). Compound 5 was further purified by Si gel column

chromatography, by eluting with n-hexane-EtOAc (2:1). Compound 4 was further purified by Si gel column chromatography, by eluting with *n*-hexane–ÉtOAc (10:1). Compound **6** was further purified by Si gel column chromatography, by eluting with *n*-hexane-EtOAc (1:1).

Cespitularin A (1): amorphous solid (360 mg); mp 71-72 °C; $[\alpha]^{25}_{D}$ –140.1° (*c* 0.12, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 202 (2.8) nm; IR (KBr) $\nu_{\rm max}$ 3650 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z 300 [M]+ (55), 285 (20), 271 (6), 257 (3), 229 (14), 201 (29), 189 (12), 175 (18), 161 (42), 147 (56), 91 (100); HREIMS *m*/*z* 300.2093 (calcd for C₂₀H₂₈O₂, 300.2082).

Cespitularin B (2): amorphous solid (5 mg); mp 62-63 °C; $[\alpha]^{25}_{D} = 20.6^{\circ} (c \ 0.08, \ CHCl_{3}); UV (MeOH) \lambda_{max} (\log \epsilon) 204 (3.9)$ nm. ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z284 [M]⁺ (26), 255 (6), 241 (5), 229 (14), 201 (29), 189 (12), 159 (8), 147 (46), 91 (100); HREIMS m/z 284.2144 (calcd for C20H28O, 284.2133).

Cespitularin C (3): amorphous solid (26 mg); mp 66–68 °C; $[\alpha]^{\overline{2}5}_{D}$ –62.3° (c 0.10, CHCl₃); IR (KBr) ν_{max} 3620 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS *m*/*z* 288 [M]⁺ (9), 273(18), 255 (5), 245 (7), 227 (4), 205 (7), 177 (11), 161 (16), 149 (61), 135 (71), 109 (100); HREIMS m/z 288.2460 (calcd for C₂₀H₃₂O, 288.2445).

Cespitularin D (4): oil (4 mg); $[\alpha]^{25}_{D}$ -169.6° (*c* 0.23, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 220 (4.1) nm; IR (KBr) ν_{max} 3630, 1750 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z 332 [M]⁺ (1), 314 (8), 269 (1), 248 (2), 245 (1), 233 (5), 220 (5), 205 (9), 187 (4), 177 (16), 107 (45), 85 (100);HRFABMS m/z 333.2056 (calcd for C₂₀H₂₉O₄, 333.2058).

Cespitularin E (5): resinous oil (6 mg); $[\alpha]^{25}_{D}$ +122.3° (c 0.22, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 232 (4.2) nm; IR (KBr) $\nu_{\rm max}$ 3660, 1690 cm $^{-1};$ 1H NMR, see Table 1; ^{13}C NMR, see Table 2; EIMS m/z 288 [M]+ (1), 270 (1), 256 (1), 221 (1), 192 (3), 176 (5), 154 (45), 137 (100), 107 (66); HRFABMS m/z 289.2158 (calcd for C19H29O2, 289.2168).

Cespitularin F (6): resinous oil (18 mg); $[\alpha]^{25}_{D}$ +39.8° (*c* 0.21, $CHCl_3$; UV (MeOH) λ_{max} (log ϵ) 236 (4.3) nm; IR (KBr) v_{max} 3610, 1730 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS *m*/*z* 316 [M]⁺ (13), 299 (40), 298 (23), 283 (17),

270 (10), 255 (13), 227 (18), 215 (13), 201 (14), 187 (17), 119 (21), 91 (100); HRFABMS m/z 316.2057 (calcd for C₂₀H₂₈O₃, 316.2031).

Cespitularin G (7): resinous oil (1 mg); $[\alpha]^{25}_{D}$ -63.6° (c 0.16, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 234 (4.2) nm; IR (KBr) $\nu_{\rm max}$ 3640, 1735 cm^-1; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS *m*/*z* 300 [M]⁺ (3), 282 (2), 272 (1), 257 (1), 223 (1), 229 (2), 199 (3), 189 (3), 149 (8), 119 (9), 55 (100); HREIMS m/z 300.2090 (calcd for C₂₀H₂₈O₂, 300.2082).

Cespitularin H (8): amorphous solid (3 mg); mp 120-121 °C; $[\alpha]^{\bar{2}5}_{D} - 93.6^{\circ}$ (*c* 0.19, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 235 (4.0) nm; IR (KBr) ν_{max} 3650, 1730, 1715 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS *m*/*z* 316 [M]⁺ (7), 298 (7), 283 (5), 257 (6), 229 (10), 203 (12), 161 (18), 105 (17), 91 (24), 69 (100); HREIMS m/z 316.2046 (calcd for $C_{20}H_{28}O_3$, 316.2031).

Cytotoxicity Testing. P-388 cells were kindly supplied by Prof. J. M. Pezzuto, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago; A549 and HT-29 were purchased from the American Type Culture Collection. Cytotoxic assays were carried out according to the procedure described previously.⁵

Acknowledgment. We thank Prof. J. M. Pezzuto, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, for the provision of P-388 cell lines. This work was supported by grants from the National Science Council of Taiwan awarded to C.-Y.D.

References and Notes

- Bowden, F. B.; Coll, J. C.; Jacqueline, M. G.; Mackay, M. F.; Willis, R. H. *Aust. J. Chem.* **1986**, *39*, 803–812.
 Bowden, B. F.; Coll, J. C.; Mitchell, S. J.; Stokie, G. J.; Blount, J. F. *Aust. J. Chem.* **1978**, *31*, 2039–2046.
- Geran, R I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. *Cancer Chemother. Rep.* **1972**, *3*, 1–91.
 Hou, R.-S.; Duh, C.-Y.; Chiang, M. Y.; Lin, C.-N. J. Nat. Prod. **1995**,
- 58, 1126-1130.
- Duh, C.-Y.; Chia, M.-C.; Wang, S.-K.; Chen, H.-J.; El-Gamal, A. A. H.; Dai, C.-F. *J. Nat. Prod.* **2001**, *64*, 1028–1031. (5)

NP020077W